.
&#:) Computer Graphics

T
Iy
o

Lighting & Shading

Teacher: A.prof. Chengying Gao(=Spk3E)

E-mail: mcsgcy@mail.sysu.edu.cn

School of Data and Computer Science

mailto:mcsgcy@mail.sysu.edu.cn

Lighting & Shading

* Without light...

* We do not see much of our scene!

i§®:) Computer Graphics
<

Lighting & Shading

* Without shading...

* Objects do not look three dimensional

AN
i&i#:) Computer Graphics

Lighting & Shading

»
sCha

*
)5) Computer Graphics

Basic concepts of light

* wave-particle duality (ERI —S14%)

Wave-like

' Computer Graphics 5

Light or visible light

Gamma Ultraviolet Infrared
Rays X-Rays Rays Rays Radar FM| TV |Shortwave| AM
1x10% 1x10'2 1x10% 1x10* 1x 102 1 x 102 1x 10

Wavelength (in meters)

Visible Light

4x107 5x 107 6x 107 7x 107
Wavelength (in meters)

High Energy Low Energy

Computer Graphics

Light source

e Natural

Computer Graphics

Light source

* Man-made

lllumination (FBE)

* lllumination is the complete description of all the
light striking a particular point on a particular surface

« Co or at a point on an object is decided by the
properties of the light leaving that point

* Knowing the illumination and the surface physics
at a point on a surface, we can determine the properties
of the light leaving that point

* In order to generate realistic images we need to
understand how light interacts with the surface of
objects

5&l#:) Computer Graphics

Interaction of light with a Solid

inc:ident NG5
llgN\

By difuse
reflection

scattering EERE TN

and absorption

specular. 353
reflection . ;Zf:,fa / refraction
HRERIY reflection
ARG
)

:&#:) Computer Graphics

Lighting Simulation

- ElEEERRE , AT ENRELERKEESE , NIRRT
RREMMARIRT | BN SBT I RERTAIRANRER

BT,

» XTI RPN FDIREXNRREAIRT |, JCRAIMELL
NARAINIE.,

- FEITEEWEGFTSMEENARESE | AZHER
=EES T

LR
AV

*
:§P;) Computer Graphics
%}i’??\'u’-f“q‘

Example

Simple lighting & flat shading

Wireframe

(7]
=
i =

Q

©

-
O

-

()]
fd

=}

Q.

£

o
O

Smooth Shading

* MNRZDMIERTHIRTRAIIE
BUR , BBFARTHERN SR
BRIX R CiE 1

- FITE T8N IRLNSERS |
MNRAZMEEETEHRENEE
- FRF9GouraudBBRSAMEE L

AN
i&i@:) Computer Graphics

Specular Light

+ NTSEEELAYER |
AT LAIAARE CHIRIER

AV
i&@:) Computer Graphics
&

Shadow

- EMABEEE | BILAH—
R EIRIVE LR

shading

* Assume a ball model is constructed by using polygon mesh, its
color is defined by glColor, then we obtain,

* However, we expect

Computer Graphics

Why?

o JHAISERRFERAYENR M Z31U T

- FGERSMHIREFRSEEREAE
EREaE BHREER
 XEREES
- RN
- MEENE
- HEER

AVSY
i§Pj) Computer Graphics

Interaction of Light

* There are two illumination phenomena of importance

* interaction of light with the boundaries between materials

 Scattering (&&%) and absorption (IkU) of light as it passes
through the material

* Boundaries between materials are surfaces which make up the

environment

* Light striking a boundary is either reflected (5z57) or transmitted
(1£57). For opaque materials, light is absorbed on passing through

the boundary

:&#:) Computer Graphics

Light interaction in a Scene

To simulate and calculate the precise
physics of light interacting with a
surface 1s extremely complex

Most graphics applications
(including ray tracing!)
use an approximation ...
a lighting model or an
illumination model

i&@:) Computer Graphics

lllumination Models

* A surface point could be illuminated by
* local illumination, light directly emitted by light sources

 global illumination, light reflected from and transmitted
through its own and other surfaces

L

with GI =

lllumination models

e [llumination models

* express the factors which determine the surface color at a
given point on a surface

* compute the color at a point in terms of both local and
global illumination

lllumination models

* Local illumination — Fast
* “Fake ({&{m)” —Ignore real physics, approximate the look
 Compute at material, from light to viewer
* Onlydirect illumination from emitters to surfaces

* Global illumination — Slow
* Itisilluminated by all the emitters and reflectors in the global scene
* Physically based

Global Illumination

U7

i W 2R TR

Color of Light

* FGEMEEFTEARENARRZRE , MEENNLGEE
(EREE R AT BEAE

- HIFFYIERENGIFE S5
- AWl RFZRE T =/REEICH
« ERZEHMNATF JUABR=fkD—4. &. HE-HBRER
NI GIlR
» JESE (luminance)BRENI = [, 1y, 1]

AV
:&fps) Computer Graphics
Sy iy /

Light Sources

* Point source

e Pg ra”e' source Direction:i/ Point
Light Sou // Light Soura%

* Ambient lights ‘ ‘

Spot Ambient

Light Sourc Ligt:t Source
r'4
‘ .h
/I'
t

* Spotlights

Point source

* A point light source emits light equally in all directions from a
single point

* The direction to the light from a point on a surface thus differs
for different points

Computer Graphics

Luminance of Point Light

- HVEMRER=

BRI Y ERAZANG AT

 WIEIR-BITERS IR | & AFITE

+ RUGRRYSEREL 1(py) = [1(py)s 1,(Py)» 11(Py)]
ERpEZHERE Y

. |
- RIFHROAAERS (p-0) == 1/(00)

°
LLT

iGi@i) Computer Graphics

Application of Point Light

- FITEVERZHRENHRICR |,

o (B BARIT R B

- RERGRIRERIERFXILLEL
RE WREFEARS , BARE

- MESSANTRBATRIEX , FltimsEn
LR

Ay
5 [.r?. Computer Graphics

Parallel source

light rays are parallel

Rays hit a planar surface at identical angles

May be modeled as point source at infinity

Directional light

Computer Graphics

Ambient Lights

* Objects not directly lit are typically still
visible

* e.g., the ceiling in this room, undersides of desks

* This is the result of indirect illumination from
emitters, bouncing off intermediate surfaces

* Too expensive to calculate (in real time), so
we use a hack called an ambient light source

* No spatial or directional characteristics;
illuminates all surfaces equally

* Amount reflected depends on surface properties

Computer Graphics

Ambient Lights

— For each sampled wavelength (R, G, B), the
ambient light reflected from a surface depends on

* The surface properties, K_,,icont

 The intensity, /.. Of the ambient light source (constant for
all points on all surfaces)

| =k |

reflected ambient tambient

mHABRAG] =1, [, 1, |RhEt, AHSGHARED
1a El

*
i&i#:) Computer Graphics

Spotlights

 Spotlights are point sources whose intensity falls off
directionally. Point + direction + cutoff angle
* Requires color, point direction, falloff parameters

e Supported by OpenGL

o Tiith b Kk bt — 7 R4 15 F
o M AP, mPathraAl.
® 4 $£0=180° B A4 XA & £ R 0

Computer Graphics

Interaction of Light Sources & Materials

- FESITENISR LAUSCaB o iIRUT | SR 5d
* ANERXIFREIERRY , BL ST
- RETERDHNZ DHENRIVEIBESRE

* WHRREEEIC LB REAN |, B2/ EETHIE
PERKRE , MEEDEHRKRIK

 RESERRGIN A N RHERERCETEEAE R FEER

AV
c"‘j’ Computer Graphics
Sty e

Materials

e Surface reflectance (=5JLt)

* |lluminate surface point
with ray of light from

different directions

 How much light is reflected

in each direction

Computer Graphics

Types of Reflection

« specular reflection (a.k.a. mirror or regular) causes

light to propagate without scattering. ;4

 diffuse reflection sends light in all directions with

equal energy. A‘é\

+ glossy/mixed reflection is a weighted combination

of specular and diffuse. EA

AN
i&i#:) Computer Graphics

Materials

Diffuse Material

Specular Material

Glossy Material

—

Computer Graphics

Reflectance Distribution Model

 most surfaces exhibit complex reflectances
— vary with incident and reflected directions.
— model with combination

NN A X

specular + glossy + diffuse = reflectance distribution

s
i&@E) Computer Graphics

Physics of Diffuse Reflection

e |deal diffuse reflection

 very rough surface at the microscopic level (FIRZ%5!)
* real-world example: chalk
* microscopic variations mean incoming ray of light equally

likely to be reflected in any direction over the hemisphere

* what does the reflected intensity depend on?

* Only depends on light direction!

Computer Graphics

Lambert’s Cosine Law

* |deal diffuse surfaces reflect according to Lambert’s
cosine law:

* the energy reflected by a small portion of a surface from a
light source in a given direction is proportional to the cosine

of the angle between that direction and the surface normal

* Reflected intensity
* independent of viewing direction

* depends on surface orientation w.r.t. light

Computer Graphics

LamberttREfREREY

Lambert's Cosine Law

Cosine Law: Eg = E * cos(0)
» Lamberty¢RBIRE!AFAZAERETIER - 0°
30° o :

VIR |, ELANERPAVIRIERE |, WIER
ENFFERIN G YSGRIMZERNBETX |
XERERBEFR I Lambertian, E LB
HEMEENSEESERM , SE 85 NN
A= A= R o e

BILTELEE Lambert’s cosine XM, Fig. 6.3 Lambert's cosine law.

Computer Graphics

Computing Diffuse Reflection

» depends on angle of incidence: angle between
surface normal and incoming light]

— Lgitfuse = Kg Tligne €08 6

n

* in practice use vector arithmetic
— Tditfuse = K Ljigne (m D

- always normalize vectors used in lighting!!!
— n, 1 should be unit vectors

» scalar (B/W intensity) or 3-tuple or 4-tuple (color)
— kg diffuse coefficient

— light: INncoming light intensity

— lyimuse: OUtgoINg light intensity (for diffuse reflection)

Computer Graphics

Diffuse Lighting Examples

* Lambertian sphere from several lighting angles:

* need only consider angles from 0° to 90°

Computer Graphics

Specular Reflection

* shiny surfaces (3% ZHM) exhibit specular reflection

* polished metal diffuse

plus
specular

diffuse

 glossy car
* specular highlight
* bright spot from light shining on a specular surface ($5m)

* view dependent

* highlight position is function of the viewer’s position

Computer Graphics

Optics of Reflection

e Reflection follows Snell’s Law:

* incoming ray and reflected ray lie in a plane with the
surface normal

* angle the reflected ray forms with surface normal equals
angle formed by incoming ray and surface normal

n

A

!

v

//9_1_9/ e(l)ight - e(l‘)EﬂECti{]ll

Computer Graphics

Non-ldeal Specular Reflectance (Glassy Reflectance)

* Snell’s law applies to perfect mirror-like surfaces, but aside
from mirrors few surfaces exhibit perfect specularity

 How can we capture the “softer” reflections of surface that are

glossy, not mirror-like?

* One option: model the microgeometry of the surface and

explicitly bounce rays off of it

Computer Graphics

Empirical Approximation

* we expect most reflected light to travel in direction

predicted by Snell’s Law

* but because of microscopic surface variations, some
light may be reflected in a direction slightly off the

ideal reflected ray

* as angle from ideal reflected ray increases, we expect

less light to be reflected

AN
i&i#:) Computer Graphics

Empirical Approximation

» Angular falloff (8= ~FF)
7]
A

<

!

r

* No physical basis, works ok in practice

) J(“— a
i&i#:) Computer Graphics

Empirical Approximation

 The cos term of lighting can be computed using vector

arithmetic:
= = Yy
lspecufar: ks[fighz(v y }") o B 7] @
I 4/ F
— Vis the unit vector towards the viewer \‘1"/

— ris the ideal reflectance direction
— K,: specular component

— ljight: iIncoming light intensity

— Ngpiny: Purely empirical constant, varies rate of falloff(#74 /i & Jt. % %%

(EROR, R EIH, FOCHAEN.)

« How to efficiently calculater ?

Computer Graphics

Calculating R Vector

*P=(N-L)N:

e projection of Lonto N, L, N are unit length

N

s
i&@E) Computer Graphics

Calculating R Vector

*P=(N-L)N:

e projection of Lonto N, L, N are unit length

2P=R+L
2P-L=R ’
2(N(N-L))-L=R N
P
0 R

AV
g cﬁ' Computer Graphics

Phong lllumination Model

* Developed by Phong Bui-Tuong (1975) is a popular model for
non-perfect reflectors

* Specular reflection of shiny objects is considered. It assumes
that maximum specular reflection occursat a =0

* The light calculation depends on the viewing direction

» Reflected intensity is modeled in terms of

: reflected light
* Ambient component incident light 4 s
N N R
. : 7™
Diffuse reflection component . | |
- \
' \
* Specular reflection component O
o
N\

Computer Graphics

Phong lllumination Model

* The illumination equation in its simplest form is given as(rey

BREY. 2R ERREREY)
I=K,I,+K,I,cosax+k, cos y

T

Ambient + Diffuse + Specular = Phong Reflection

Computer Graphics

Phong lllumination Model

o Multilights (2 BS3¢LE)
I=K,I,+YI,(K,cosa+k, cos"y)
i=1

e Vector arithmetic (RE=FEFT)

m

[=K1, +> 1K, 1)+ k(7 7))
=1

/& *.
i&i#:) Computer Graphics

Colored objects

* The color of objects is set by appropriate setting of the ambient
and the diffused reflection coefficients

e Specular coefficient is not decided by the color

* There are now three intensity equations

b= /.IA/J/'+ //):/(1//'(Ve L)H kS(R. I/)N]

r

[, = /.f/(.u/ T //):/(</(/(E » Z) T /(s(E. ;)”]

[

Iy = 1Ko+ L] Kyl Ne Z\) + K (e ;j)/’]

 Summarizing these three equations as single expression

4

[(r.g.0)= 1,k (r.g.0)+ 1 [K,(r.g.b)(N e L)+ k(Re /)]

*
i&i@:) Computer Graphics

Lighting in OpenGL

Computer Graphics

OpenGL Lighting Model

* The OpenGL lighting model is simple.

—
@)

e Types of lights N

* Ambient light is light that has been reflected so O
much that it doesn’t seem to come from
anywhere and illuminates from all directions

equally

* Point lights — rays emanate in all directions. Small
compared to objects in the scene

* Spot lights — rays emanate in a narrow range of

angles

Computer Graphics

Lights in OpenGL

* Most implementations of OpenGL can have up to 8
lights in the scene

* Each light can have a diffuse and a specular component

e Each light can also have an ambient component (light that is
reflected off of so many surfaces, we can’t tell where it
comes from)

* Lights are referred to by the macros

* GL_LIGHTO, GL_LIGHT], ..., GL_LIGHTS8

* We set the properties of lights with calls to the function
“slLightfv” (v stands for vector)

:&#:) Computer Graphics

Light properties

- 1. CBIERE -

Glfloat light_position[] ={ 1.0, 1.0, 1.0, 0.0 };

glLightfv(GL_LIGHTO, GL_POSITION, light_position);

FHHlight_position@Z— M85, F8RE X FICIRAL BT IRALREA .
HE A CIRRHE AR VR E fE

[FIE, FRATH AT SRR 5 e SOGTR B H At LA EAE, #lan.
GLfloat light_ambient [] = { 0.0, 0.0, 0.0, 1.0 };
GLfloat light_diffuse []={ 1.0, 1.0, 1.0, 1.0 };
GLfloat light_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
glLightfv(GL_LIGHTO, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHTO, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHTO, GL_SPECULAR, light_specular);

5&l#:) Computer Graphics

Light properties

« void glLightfv(GLenum lighti, GLenum pname, GLfloat *params);
v’ lighti: Y4 5 :0~8,
v' pname: Specifies the light source properties parameter that is
being updated.

v' Params: parameter values.

BB B
(0.0, 0.0, 0.0, 1.0) RGEHBAﬁE“{FJEFt%i'b

| (1.0, 1.0, 1.0, 1.0) RGBAEI, T8 K5
GL_SPECULAR (1.0,1.0,1.0,1.0) RGBAHI, T & m
GL POSITION (0.0,0.0,1.0,0.0) FEIRAL B F IR AR (X,Y,Z,W)
GL_SPOT_ DIRECTION (0.0,0.0,-1.0) RGEFEETTERE (X,y,2)
GL_SPOT_EXPONENT 0.0 RIGIEEIRE
GL_SPOT_CUTOFF 180.0 RIGTEREIEA
g CONSTANT _ATTENUATI1.0 wHERET

. LINER_ATTENUATION 0.0 PR E T

bﬁUADRA‘I‘IC_ATI’ENUA 0.0 S B E T

Computer Graphics

Light properties

2. JA B :

o B RIBER, HEBEBEHR, HI glEnable(GL_LIGHTING);

o HE BT, WIIAH: gDisable(GL_LIGHTING)R] < 4B
« R, DL X IEIRE R, H:

glEnable(GL_LIGHTO); glEnable(GL_LIGHT1);.......

LY

*
() Computer Graphics
Oy

Lighting in OpenGL

 light source: amount of RGB light emitted

— value represents percentage of full intensity
e.g., (1.0,0.5,0.95)

— every light source emits ambient, diffuse, and specular
light

 materials: amount of RGB light reflected

— value represents percentage reflected
egd., (0.0,1.0,0.5)

* Interaction: component-wise multiply
—red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

AN
:&fps) Computer Graphics

Material Properties

« void glMaterialfv(GLenum face, GLenum pname, const
GlLfloat* params);

v’ face: Specifies which face or faces are being updated. Must be
one of GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK

v pname: Specifies the material parameter of the face or faces that is
being updated.

v' Params: parameter values.

284 BREE UL
GL_AMBIENT (0.2, 0.2, 0.2, 1.0) R E

GL_DIFFUSE (0.8, 0.8, 0.8, 1.0) R R AL E
GLAMBIENT AND _DIF ? PR IR B8 fU B e
GL_SPECULAR (0.0, 0.0, 0.0, 1.0) MR B BB
GL_SHINESS 0.0 HHEH OLRE

GL_EMISSION (0.0, 0.0, 0.0, 1.0) MR RS EE
GL_COLOR_INDEXES (0, 1, 1) RIS, 8BRS EAESmEHE

Computer Graphics

Example

void myinit{(void)

{

GLfloat mat ambient[] =
GLfloat mat diffusel] = , , 0.8, -
GLfloat mat specular[] = { 1.0, 0.0, 1.0, 1.0 }:
GLfloat mat shininess[] = { 50.0

glMaterialfv (GL FRONT, GL AMBIENT, mat ambient) :
glMaterialfv (GL FRONT, GL DIFFUSE, mat diffuse) :
glMaterialfv(GL FRONT, GL SPECULAR, mat specular) ;
glMaterialfv (GL FRONT, GL SHININESS, mat shininess):

GLfloat light diffuse[]= { 0.0, 0.0, 1.0, 1.0};
GLfloat light position[] = { 1.0, 1.0, 1.0, 0.0 };:

glLightfv(GL _LIGHT0, GL_DIFFUSE, light diffuse)
glLightfv (GL _LIGHTO, GL_POSITION, light position);

glEnable (GL_LIGHTING) ;
glEnable (GL. LIGHTO) :
glDepthFunc (GL_LESS) ;
glEnable (GL. DEPTH TEST) :

Computer Graphics

Example

s LI EREERETERE—NEEREK , EREFEERoBh AL
—FIv=EERE, N EaEY | BKERFIEHIEERRE
mat_diffuse[] Slight_diffuse[]FPEI=1""Ent2 o ={E183

, BP:

(cll

(0.0*1.0, 0.0*1.0, 0.8*1.0, 1.0*1.0) = (0.0, 0.0, 0.8, 1.0) ,
« FTLABKAER D 2EINIEE,

AN
i&#:) Computer Graphics

Shading

* Shading is the process of determining the colors of all the pixels

covered by a surface using an illumination model

e Simplest method is to
* determine surface visible at each pixel
e compute normal of the surface

* evaluate light intensity and color using an illumination model

* This is quite expensive. The shading methods could be made

efficient by customizing for specific surface representation

Computer Graphics

Lighting vs. Shading

* Lighting (5'¢HB)

* process of computing the luminous intensity (i.e., outgoing

light) at a particular 3D point, usually on a surface

* Shading (&%, , &)

* the process of assigning colors to pixels ¢

/

R] .

*
i&i@:) Computer Graphics

Applying lllumination

* we now have an illumination model for a point on a
surface

e if surface defined as mesh of polygonal facets, which
points should we use?

* Three shading methods:

* Flat Shading (YEEEACIE)

* Gouraud Shading (J&BiaE/AbIE)

* Phong Shading (PhongffaZAbIR)

AV
i&i#:) Computer Graphics

Shading Models

* Flat Shading
 Compute Phong lighting once for entire polygon
* Constant color

* Gouraud Shading

 Compute Phong lighting at the vertices and interpolate
lighting values across polygon

* Interpolate colors

* Phong Shading

* Compute averaged vertex normals

* Interpolate normals across polygon and perform Phong
lighting across polygon

Flat Shading

* |t is the simplest of the shading models and is also called as
faceted shading or flat shading

* One polygon receives only one intensity value

* |llumination model is applied only once for each polygon

* Makes the following assumptions

—light source is at infinity,so)\ . J, is constant across a
polygon face

—viewer is at infinity,so [. |/ is constant across the
polygon face

—polygon represents the actual surface being modeled

Computer Graphics

Flat Shading

« |t is a fast technique for shading as it involves very
less calculations

 |f the polygons are very small(say one pixel large)
when projected on the screen then the result is as
good as any interpolative technique

« Usually used of coarse preview of scenes

« obviously inaccurate for smooth surfaces for most
cases

{GE) Computer Graphics

Flat Shading

o NSEMR AR EEAVT AR E TR
« FRQlateral inhibition (UHDPH]) 4&&R

- MIERE| TFENFR LEIRER |, FRAMachs
e G B RIBEREAL

 IREDNEERIXIMER , R

5

AN
i&i#:) Computer Graphics

ISR gmE —

yshra

LLm

N\

2 P) it

Flat Shading in OpenGL

OpenGL uses the normal of the first vertex
of a single polygon to determine the color.

glShadeModel(GL_FLAT);

»
sCha

*
)5) Computer Graphics

el

Gouraud Shading

e Performs the illumination model on vertices and interpolates

the intensity of the remaining points on the surface

Notice that facet artifacts are still visible

Gouraud Shading

* Itis aninterpolative shading method, also called intensity interpolation shading
or color interpolation shading

* Involves the following steps

* Normals are computed at the vertex as the average of the normals of all the faces
meeting at that vertex

* Intensity at each vertex is calculated using the normal and an illumination model

* For each polygon the intensity values for the interior pixels are calculated by linear
interpolation of the intensities at the vertices

g mtm A tn,

n+n,+n,+n,

Computer Graphics

Gouraud Shading

* This is the most common approach
— Perform Phong lighting at the vertices
— Linearly interpolate the resulting colors over faces
« Along edges
- Along scanlines c; +ty(cycy) C

Does this eliminate the facets?

C,
c1 +t1(c2-c1) + t3(c1 + t2(c3-c1)- c1 + t1(c2-c1))

c, + t,(c5-Cy)

AV
i&#:) Computer Graphics

Gouraud Shading Artifacts

* Mach bands (S it)

Discontinuity in rate
of color change

occurs here glShadeModel (GL_SMOOTH) ;

AV
i&#:) Computer Graphics

Phong Shading

* Phong shading is not the same as Phong lllumination Model,

though they are sometimes mixed up

* Phong lllumination: the empirical model we’ve been discussing to
calculate illumination at a point on a surface

* Phong shading: linearly interpolating the surface normal across the
facet, applying the Phong lllumination model at every pixel
e Same input as Gouraud shading
e Usually very smooth-looking results:

* But, considerably more expensive

Computer Graphics

Review: Phong lllumination Model

* The illumination equation in its simplest form is given as(rey

BREY. 2R ERREREY)
I=K,I,+K,I,cosax+k, cos y

T

Ambient + Diffuse + Specular = Phong Reflection

Computer Graphics

Phong Shading

* |t is an interpolative shading method, also called:

* normal-vector interpolation shading

* Involves the following steps

* 1. Normals are computed at the vertex as the average of the
normals of all the faces meeting at that vertex

e 2. For each polygon the value of the normal for the surface
occupied by each interior pixel is calculated by linear interpolation
of the normals at the vertices

* Specular reflections are also incorporated

* Interpolation of normals is done exactly like intensity
interpolation in Gouraud shading

Computer Graphics

Phong Shading

' Computer Graphics 30

Pros and cons

— Light intensity changes more naturally

— Computational cost is higher than that of Gouraud
Shading (6~8 times)

— Polygonal silhouettes remain

Gouraud Phong

- Solution:
- finer subdivision for the entire surface

- finer subdivision only along silhouette (view dependent)

Flat Shading

Computer Graphics

Gouraud Shading

Computer Graphics

Phong Shading

Computer Graphics

Advanced Rendering

Global Illumination Models

 Simple lighting/shading methods simulate local
illumination models

* No object-object interaction
 global illumination models

* More realism, more computation
* Approaches

 Ray tracing (3¢ZIBiER)

* Radiosity (}259%)

* Photon mapping (F¢FET)

» Subsurface scattering (XEEEEY)

*
i&i@:) Computer Graphics

Recall : what is ray tracing

In CG, drawing is...

‘-"— b

- ry
4 e
|

photography is...

Cam_era

Image

/

8 Light Source

View Ray

f Shadow Ray

scan conversion(rasterization) ray tracing

*
i&i@:) Computer Graphics

Ray Tracing

* Ray Tracing is a technique for image synthesis helps create a 2D
picture of a 3D world

* An algorithm for visible surface determination, which combines
following factors in a single model
* hidden surface removal
e shading due to direct illumination
* shading due to global illumination

* shadows

Computer Graphics

Features

e Best known for handling shadows, reflections and refractions
* Itis an algorithm that works entirely in object space, hence accurate

 Partial solution to global illumination problem and is the most complete
simulation of an illumination-reflection model in computer graphics

* Ray tracing has produced some of the most realistic images in computer

graphics T
Camera

8 Light Source

Shadow Ray

[
View Ray

/
/

Scene Object

Computer Graphics

Ray Tracing

Ray Tracing

Simple Ray Tracing

- view dependent method ! O

— cast a ray from viewer’s eye
through each pixel

— compute intersection of ray
with first object in scene

— cast ray from intersection
point on object to light

sources °
projection
reference point

N

INJ T)]]

IENENNECEN|

pixel positions
on projection
plane

Computer Graphics

Representing a Ray

- Ray tracing is based on ray-object intersection
algorithms

Representing a ray becomes essential:
A point P on a ray is given by the parametric equation

P=0O+t*D , for t>0
where O is the ray origin, D is the ray direction

If the direction D is normalized then t is the distance
of the point from the origin

*
i&i#:) Computer Graphics

Representing a Ray

- Given a ray with
origin O(X,, Yo, Z,) and direction D(xy, Yq4, Zq)

any point on the ray is given as

P(x0+t°xd, y +tey,, Zo+f°Zd)

* This equation forms the basis of calculating intersections
with some of the common primitives like sphere, plane etc..

Computer Graphics

Ray-Sphere Intersection

- Sphere Representation:
- center C(x,, Y., Z.) , radius r

- Equation of the sphere is
(x—xc)Z +(y—yc)2 +(Z—ZC)Z =7’

* Substituting the ray equation into the sphere equation we
have

(xo+t')cd—)cc)z+(y0+t'yd—yc)z+(zo+zﬁ"za,—zc)z =7’

AV
i&i#:) Computer Graphics

Ray-Sphere Intersection

* This is a quadratic equation of the form

A*t> +B*t+C=0
where,
A=xd2+yd2+zd2 =1

B=2'(xd .(xo _xc)+yd '(yo—yc)+zd '(Zo‘zc))

C=(xo —xc)Z +(yo—yc)z +(zo—zc)Z —r’

* the two roots are given by

_B-+B?=4eC _B++B =4eC

— -d.(e-c) +/- sqrt((d.(e-c))*2-(d.d)((e-c).(e-c)-r*2))

t, = 5 t, S e /

[N p(t) = e+td

* The smallest positive t value gives the nearest point of ahere.
. . p-c).(p-c)-r*2=0
intersection

Computer Graphics

Ray-Plane Intersection

- The plane is represented by the equation
a*x+b*y+cez+d=0

* Substituting the ray equation into the plane equation
we have

a'(xo+t°xd)+b°(yo+t'yd)+c'(zo+t°zd)+d=0

* Solving for t

— a‘x0+b'yo+c'zo+d)

(a’xd +b°yd+c'zd)

[=

Computer Graphics

Ray-Polygon Intersection

* Involves two steps

* Find the point of intersection of the ray with the plane of

the polygon

* Check if the point is inside or outside the polygon (even-

odd rule)
intersection:
\ t=((p1-e).n)/d.n
polygon...
X-Axis

1 Intersection 9 Y-Axis

ray:
p(t) = e+td

Efficiency in Ray Tracing

- 95% of the time is spent in ray-object intersection
- So to increase speed

- write faster intersection algorithms

- reduce number of intersection calculations

- Intersection algorithms are always written to work
efficiently. Reducing the number of intersection
calculation is the key to increase speeds

AN
i&#:) Computer Graphics

Some observations of ray tracing

- computationally intensive

- may take hours to generate a scene of reasonable
complexity

- view dependent

- For every change in view the image has to be recomputed

- Ray tracing in real-time is a challenge even today
- GPU based ~ or Cloud based ~

- Use of parallel machines and dedicated ray tracing chips are
some methods being investigated to do real-time ray tracing

Computer Graphics

More about ray tracing

- LuxRender is a physically based and unbiased rendering engine. Based on state
of the art algorithms, LuxRender simulates the flow of light according to
physical equations, thus producing realistic images of photographic quality.

-

oy | | mll_ﬂuuﬁmhé’?’f. .

http://luxrender.net/

Computer Graphics

http://luxrender.net/

Fantastic work from CAD Lab

* RenderAnts Pro (GPU based)

e http://www.gaps-zju.org/project/renderants.html

http://www.gaps-zju.org/project/renderants.html

Aliyun Render

* Rendering Cloud System (cloud based @ aliyun)

* https://rendering.alivun.com/

& https://rendering.aliyun.com

Sk =8

BEPHS

BRARE Wb REHK RSSHI AFSES AR

GES AL S 7 IS

YERAE , ETREEST SIS EiEeh , BaunalasahE , mue
ﬂflgﬁ%ﬁﬁimfﬁnﬂmm
TR, 2HUAAS, PAAS, SAASERIRSIE R0

ISR E=E Bk AN

FHaee | zmiEE Q

st izsiis
higsi it 2k

IR W)
DR TAESF RIS

FERRLE
=
SAASE R HAETFA Web App
PAASE 81 it BatchCompute

AN ECS L, BIRIFFaEE , TRt

F&FFE OSS

1AASEE

Computer Graphics

TRESEE TBRNIEEART

B EERECSHISFIE0SS , SAFARIREEN 5ERA BTEA.

https://rendering.aliyun.com/

